Correntropy-Based Evolving Fuzzy Neural System

نویسندگان

  • Rong-Jing Bao
  • Hai-Jun Rong
  • Badong Chen
  • Pak Kin Wong
چکیده

In this paper, a correntropy-based evolving fuzzy neural system (correntropy-EFNS) is proposed for approximation of nonlinear systems. Different from the commonly used meansquare error criterion, correntropy has a strong outliers rejection ability through capturing the higher moments of the error distribution. Considering the merits of correntropy, this paper brings contributions to build EFNS based on the correntropy concept to achieve a more stable evolution of the rule base and update of the rule parameters instead of the commonly used meansquare error criterion. The correntropy-EFNS (CEFNS) begins with an empty rule base and all rules are evolved online based on the correntropy criterion. The consequent part parameters are tuned based on the maximum correntropy criterion where the correntropy is used as the cost function so as to improve the nonGaussian noise rejection ability. The steady-state convergence performance of the CEFNS is studied through the calculation of the steady-state excess mean square error (EMSE) in two cases: i) Gaussian noise; and ii) non-Gaussian noise. Finally, the CEFNS is validated through a benchmark system identification problem, a Mackey-Glass time series prediction problem as well as five other real-world benchmark regression problems under both noise-free and noisy conditions. Compared with other evolving fuzzy neural systems, the simulation results show that the proposed CEFNS produces better approximation accuracy using the least number of rules and training time and also owns superior non-Gaussian noise handling capability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critério de correntropia no treinamento de redes fuzzy wavelet neural networks para identificação de sistemas dinâmicos não lineares

The great interest in nonlinear system identification is mainly due to the fact that a large amount of real systems are complex and need to have their nonlinearities considered so that their models can be successfully used in applications of control, prediction, inference, among others. This work evaluates the application of Fuzzy Wavelet Neural Networks (FWNN) to identify nonlinear dynamical s...

متن کامل

A Regularized Correntropy Framework for Robust Pattern Recognition

This letter proposes a new multiple linear regression model using regularized correntropy for robust pattern recognition. First, we motivate the use of correntropy to improve the robustness of the classical mean square error (MSE) criterion that is sensitive to outliers. Then an l regularization scheme is imposed on the correntropy to learn robust and sparse representations. Based on the half-q...

متن کامل

Evolving connectionist systems for adaptive learning and knowledge discovery: Trends and directions

This paper follows the 25 years of development of methods and systems for knowledge-based neural network systems and more specifically the recent evolving connectionist systems (ECOS). ECOS combine the adaptive/evolving learning ability of neural networks and the approximate reasoning and linguistically meaningful explanation features of symbolic representation, such as fuzzy rules. This review...

متن کامل

Utilizing a new feed-back fuzzy neural network for solving a system of fuzzy equations

This paper intends to offer a new iterative method based on articial neural networks for finding solution of a fuzzy equations system. Our proposed fuzzied neural network is a ve-layer feedback neural network that corresponding connection weights to output layer are fuzzy numbers. This architecture of articial neural networks, can get a real input vector and calculates its corresponding fuzzy o...

متن کامل

Evolving fuzzy optimally pruned extreme learning machine for regression problems

This paper proposes an approach to the identification of evolving fuzzy Takagi–Sugeno systems based on the optimally pruned extreme learning machine (OP-ELM) methodology. First, we describe ELM, a simple yet accurate learning algorithm for training single-hidden layer feed-forward artificial neural networks with random hidden neurons. We then describe the OP-ELM methodology for building ELM mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017